
Advanced Type
Features

Jeffrey Maddalon

Uninterpreted
Functions

Dependent Types

Parameterized
Types

Partial Functions

Judgements

Advanced Type Features

Jeffrey Maddalon
j.m.maddalon@nasa.gov

National Aeronautics and Space Administration

PVS Class, 2007



Advanced Type
Features

Jeffrey Maddalon

Uninterpreted
Functions

Dependent Types

Parameterized
Types

Partial Functions

Judgements

Outline

Uninterpreted Functions

Dependent Types

Parameterized Types

Partial Functions

Judgements



Advanced Type
Features

Jeffrey Maddalon

Uninterpreted
Functions

Dependent Types

Parameterized
Types

Partial Functions

Judgements

Uninterpreted Functions

In PVS, functions can be defined without a “body.” These
functions are called uninterpreted.

floor(a: real): int

abs: [int -> nat]

which_quadrant(x: real, y: real): {i: nat | i >= 1 AND i <= 4}

When would you use an uninterpreted function?

I Different implementations (e.g. sorting)

I The precise function is unknown, but its general
characteristics are known

I The function represents unknown information (e.g. time
of user input)

Types are important!

I Only type information can be used in a proof

I Should restrict the types as much as possible. A poor
type choice is abs:[int -> int]



Advanced Type
Features

Jeffrey Maddalon

Uninterpreted
Functions

Dependent Types

Parameterized
Types

Partial Functions

Judgements

Dependent Types

Dependent types are types that depend on other values

real_stack: TYPE = [# size: nat,

elements: [{n: nat | n < size} -> real]

#]

mod(m: nat, d: posnat): {r: nat | r < d}

In this lecture...

I We will explore how the prover can take advantage of
dependent types

I We will use the floor ceil theory from the prelude as a
running example



Advanced Type
Features

Jeffrey Maddalon

Uninterpreted
Functions

Dependent Types

Parameterized
Types

Partial Functions

Judgements

Functional Attempt to define floor

First try, an interpreted function

x: VAR real

floor(x): int = x - fractional(x)

I Ugh, now we have to define another function



Advanced Type
Features

Jeffrey Maddalon

Uninterpreted
Functions

Dependent Types

Parameterized
Types

Partial Functions

Judgements

Axiomatic attempt to define floor

x: VAR real

floor(x): int

floor_def: AXIOM floor(x) <= x & x < floor(x) + 1

This fully defines the key property of a floor function, but

I Must ensure that our axioms are consistent
Warning: it is easy to miss problems here!

I Must explicitly bring in the properties of floor through
the floor def axiom

I But on the plus side, we don’t have to prove axioms



Advanced Type
Features

Jeffrey Maddalon

Uninterpreted
Functions

Dependent Types

Parameterized
Types

Partial Functions

Judgements

The Prelude Theory floor ceil

floor_ceil: THEORY

x: VAR real

i: VAR integer

floor(x): {i | i <= x & x < i + 1}

The return type of floor depends upon the argument x

I The return type is so constrained that it only has one
element (and we can prove this in PVS)

I The main property of floor is contained in the return
type

I Thus, without providing a body, we have completely
defined this function

I ceiling is defined in a similar manner:

ceiling(x): {i | x <= i & i < x + 1}



Advanced Type
Features

Jeffrey Maddalon

Uninterpreted
Functions

Dependent Types

Parameterized
Types

Partial Functions

Judgements

Proving Key Properties

The ASSERT command tries to prove a result automatically
using the type information.

floor_def: LEMMA floor(x) <= x & x < floor(x) + 1

Proof of floor def:
|-------

{1} (FORALL (x: real): floor(x) <= x & x < floor(x) + 1)

Rule? (SKOSIMP*)

|-------

{1} floor(x!1) <= x!1 & x!1 < floor(x!1) + 1

Rule? (ASSERT)

|-------

{1} floor(x!1) <= x!1 & x!1 < 1 + floor(x!1)

Rule? (ASSERT)

Simplifying, rewriting, and recording with decision

Q.E.D.



Advanced Type
Features

Jeffrey Maddalon

Uninterpreted
Functions

Dependent Types

Parameterized
Types

Partial Functions

Judgements

Observations on the Proof

I The following properties of floor are proved with
(SKOSIMP*) (ASSERT):

floor_ceiling_reflect1: LEMMA floor(-x) = -ceiling(x)

floor_int : LEMMA floor(i) = i

ceiling_int : LEMMA ceiling(i) = i

floor_ceiling_int : LEMMA floor(i)=ceiling(i)

floor_split : LEMMA i = floor(i/2)+ceiling(i/2)

floor_within_1 : LEMMA x - floor(x) < 1

ceiling_within_1 : LEMMA ceiling(x) - x < 1

I Sometimes a TYPEPRED floor(...) will be needed. This
usually becomes necessary when nonlinear arithmetic is
present in the sequent



Advanced Type
Features

Jeffrey Maddalon

Uninterpreted
Functions

Dependent Types

Parameterized
Types

Partial Functions

Judgements

Existence TCCs
PVS requires us to demonstrate that the return type is
non-empty

% Existence TCC generated ... for floor(x): {i | i<=x & x<i+1}
floor_TCC1: OBLIGATION

(EXISTS (x1:[x:real -> {i: integer | i<=x & x<1+i}]): TRUE);

The proof relies on supplying a value that satisfies the type:

(inst + "lambda x: choose({i: integer | i<=x & x<1+i})")

Then, to show this set is non-empty, we rely on the following
properties of the reals located in the prelude:

lub_int: LEMMA

upper_bound?((LAMBDA i, j: i <= j))(i, I)

=> EXISTS (j:(I)): least_upper_bound?((LAMBDA i,j:i<=j))(j,I)

axiom_of_archimedes: LEMMA EXISTS i: x < i

We will spare you the details, though you can get the proof
by issuing M-x edit-proof in the prelude.pvs buffer that is
provided when you type M-x vpf



Advanced Type
Features

Jeffrey Maddalon

Uninterpreted
Functions

Dependent Types

Parameterized
Types

Partial Functions

Judgements

Motivation for Parameterized Types

Sometimes dependent types are not enough:

real_array: TYPE = [below(N) -> real]

PVS does not know what N is. Even if we add a variable
declaration for N the problem persists:

N: VAR posint

real_array: TYPE = [below(N) -> real]

Note, constant types are defined as expected

real_array_ten: TYPE = [below(10) -> real]



Advanced Type
Features

Jeffrey Maddalon

Uninterpreted
Functions

Dependent Types

Parameterized
Types

Partial Functions

Judgements

Parameterized Types

There are two ways to use use N in a type declaration:

I By adding N as a theory parameter

arrays [N: posint] : THEORY

real_array: TYPE = [below(N) -> real]

I By adding N as a type parameter

arrays : THEORY

N: VAR posint

real_array(N): TYPE = [below(N) -> real]

I What is the difference?



Advanced Type
Features

Jeffrey Maddalon

Uninterpreted
Functions

Dependent Types

Parameterized
Types

Partial Functions

Judgements

Scope!

Theory parameter N is known throughout the theory; there
is only one N. Information about N is implicit.

arrays [N: posint] : THEORY

real_array: TYPE = [below(N) -> real]

A: VAR real_array

P: pred[real_array]

lem: LEMMA FORALL A: P(A)

Type parameter N is not fixed within the theory. We can not
declare a global variable A as above, but we
must qualify A and P fully in each lemma:

arrays : THEORY

N: VAR posint

real_array(N): TYPE = [below(N) -> real]

lem: LEMMA FORALL (A:below_array(N)),

(P:pred[below_array(N)]): P(A)



Advanced Type
Features

Jeffrey Maddalon

Uninterpreted
Functions

Dependent Types

Parameterized
Types

Partial Functions

Judgements

Using Total Functions For Partial Specification

I In PVS, all functions are total, so the domains should
be suitably restricted. For example:

div(x: real, y: {nz: real | nz /= 0}): real

I To partially specify the behavior, one can use total
functions:

x,y,z: VAR real

unspecified(x,y,z): real

faulty: VAR bool

component(x,y,z,faulty): real =

IF faulty THEN unspecified(x,y,z)

ELSE x*x + y*y + z*z

ENDIF

I The uninterpreted function unspecified returns a value

I But, we do not know anything about that value (except
its type)

I Rushby calls these “partially-specified total functions”



Advanced Type
Features

Jeffrey Maddalon

Uninterpreted
Functions

Dependent Types

Parameterized
Types

Partial Functions

Judgements

Equal Unspecifieds

I If we are not careful, we can prove things we don’t
mean

component1(x,y,z,faulty): real =

IF faulty THEN unspecified(x,y,z)

ELSE x*x + y*y + z*z

ENDIF

component2(x,y,z,faulty): real =

IF faulty THEN unspecified(x,y,z)

ELSE 4*x + 4*y + 4*z

ENDIF

I We probably didn’t mean to say that if component1 and
component2 are both faulty then they produce the same
value. That is, we can prove:

faulty1 & faulty2 =>

component1(x,y,z,faulty1) = component2(x,y,z,faulty2)

I Solve this with two unspecified functions: unspecified1

and unspecified2



Advanced Type
Features

Jeffrey Maddalon

Uninterpreted
Functions

Dependent Types

Parameterized
Types

Partial Functions

Judgements

Equal Unspecifieds in Distributed Systems

I Equal unspecifieds is more likely in distributed systems
where the same function is executed on different
processors. Solutions?

I Add another parameter to unspecified:
x,y,z: VAR real

i, proc_id: VAR nat

unspecified(x,y,z,i): real

faulty: VAR bool

component_on(x,y,z,faulty,proc_id): real =

IF faulty THEN unspecified(x,y,z,proc_id)

ELSE x*x + y*y + z*z

ENDIF

I If you are worried about persistence over time you may
have to add a parameter for time:

component_on_at(x,y,z,faulty,proc_id,clock_time): real =

IF faulty THEN unspecified(x,y,z,proc_id,clock_time)

ELSE x*x + y*y + z*z

ENDIF



Advanced Type
Features

Jeffrey Maddalon

Uninterpreted
Functions

Dependent Types

Parameterized
Types

Partial Functions

Judgements

Equal Unspecifieds in Distributed Systems

I Equal unspecifieds is more likely in distributed systems
where the same function is executed on different
processors. Solutions?

I Add another parameter to unspecified:
x,y,z: VAR real

i, proc_id: VAR nat

unspecified(x,y,z,i): real

faulty: VAR bool

component_on(x,y,z,faulty,proc_id): real =

IF faulty THEN unspecified(x,y,z,proc_id)

ELSE x*x + y*y + z*z

ENDIF

I If you are worried about persistence over time you may
have to add a parameter for time:

component_on_at(x,y,z,faulty,proc_id,clock_time): real =

IF faulty THEN unspecified(x,y,z,proc_id,clock_time)

ELSE x*x + y*y + z*z

ENDIF



Advanced Type
Features

Jeffrey Maddalon

Uninterpreted
Functions

Dependent Types

Parameterized
Types

Partial Functions

Judgements

Another Method for Partial Specification

component_a(x,y,z,faulty): real =

IF faulty THEN unspecified(x,y,z)

ELSE x*x + y*y + z*z

ENDIF

component_b(x,y,z,faulty): { w: real | NOT faulty =>

w = x*x + y*y + z*z}

I The dependent type mechanism is used to constrain the
return type of the function

I But, only when faulty is FALSE

I We cannot prove

component_a(x,y,z,faulty) = component_b(x,y,z,faulty)

I Why?



Advanced Type
Features

Jeffrey Maddalon

Uninterpreted
Functions

Dependent Types

Parameterized
Types

Partial Functions

Judgements

Motivation for Judgements

An example based on the NASA mod library:

i,k: VAR int

j: VAR nonzero_integer

m: VAR posnat

mod(i,j): {k | abs(k) < abs(j)} = i - j * floor(i/j)

mod_pos: LEMMA mod(i,m) >= 0 AND mod(i,m) < m

mod pos says, if mod’s second argument is positive, then the
return type is

I non-negative

I smaller than the second argument

Let’s prove mod pos



Advanced Type
Features

Jeffrey Maddalon

Uninterpreted
Functions

Dependent Types

Parameterized
Types

Partial Functions

Judgements

Proof of mod pos

|-------

{1} FORALL (i:integer, m:posnat): mod(i,m) >= 0 AND mod(i,m)<m

Rule? (skosimp*)

|-------

{1} mod(i!1, m!1) >= 0 AND mod(i!1, m!1) < m!1

Rule? (expand "mod")

|-------

{1} i!1 - m!1 * floor(i!1 / m!1) >= 0 AND

i!1 - m!1 * floor(i!1 / m!1) < m!1

Rule? (typepred "floor(i!1 / m!1)")

{-1} floor(i!1 / m!1) <= i!1 / m!1

{-2} i!1 / m!1 < 1 + floor(i!1 / m!1)

|-------

[1] i!1 - m!1 * floor(i!1 / m!1) >= 0 AND

i!1 - m!1 * floor(i!1 / m!1) < m!1



Advanced Type
Features

Jeffrey Maddalon

Uninterpreted
Functions

Dependent Types

Parameterized
Types

Partial Functions

Judgements

Proof of mod pos (cont’d)

{-1} floor(i!1 / m!1) <= i!1 / m!1

{-2} i!1 / m!1 < 1 + floor(i!1 / m!1)

|-------

[1] i!1 - m!1 * floor(i!1 / m!1) >= 0 AND

i!1 - m!1 * floor(i!1 / m!1) < m!1

Rule? (grind-reals)

div_mult_pos_le2 rewrites floor(i!1 / m!1) <= i!1 / m!1

to floor(i!1 / m!1) * m!1 <= i!1

div_mult_pos_lt1 rewrites i!1 / m!1 < 1 + floor(i!1 / m!1)

to i!1 < floor(i!1 / m!1) * m!1 + m!1

div_mult_pos_le2 rewrites floor(i!1 / m!1) <= i!1 / m!1

to floor(i!1 / m!1) * m!1 <= i!1

div_mult_pos_lt1 rewrites i!1 / m!1 < 1 + floor(i!1 / m!1)

to i!1 < floor(i!1 / m!1) * m!1 + m!1

Applying GRIND-REALS,

Q.E.D.

A total of 4 proof steps.



Advanced Type
Features

Jeffrey Maddalon

Uninterpreted
Functions

Dependent Types

Parameterized
Types

Partial Functions

Judgements

Why Judgements?1

i,k: VAR int

m: VAR posnat

mod_pos: LEMMA mod(i,m) >= 0 AND mod(i,m) < m

Essentially, mod pos describes the type of mod whenever the
second parameter is positive.

I Would be nice if this were known to prover

I Might eliminate some nuisance TCCs

1PVS only uses the spelling judgement, an alternate English spelling
is judgment



Advanced Type
Features

Jeffrey Maddalon

Uninterpreted
Functions

Dependent Types

Parameterized
Types

Partial Functions

Judgements

Judgements

A JUDGEMENT supplies type information to the typechecker
beyond what comes from the function definition.

I For mod, if the domain of the function is restricted, then
the return type is restricted.

i,k: VAR int

m: VAR posnat

mod_below: JUDGEMENT mod(i,m) HAS_TYPE below(m)

Once we have the mod below judgement, we can prove the
mod pos lemma in only three steps:
(SKOSIMP) (ASSERT) (ASSERT)

I And we didn’t have to explicitly bring in mod below

Or two steps if we bring in the judgement:
(SKOSIMP) (REWRITE "mod below")



Advanced Type
Features

Jeffrey Maddalon

Uninterpreted
Functions

Dependent Types

Parameterized
Types

Partial Functions

Judgements

No Free Lunch

PVS will create a TCC that requires us to prove the
judgement is correct.

% Judgement subtype TCC generated (at line ...) for mod(i,m)

% expected type below(m)

% unfinished

mod_below: OBLIGATION FORALL (i,m): mod(i,m)>=0 AND mod(i,m)<m;

This proof is very similar to the original proof of mod pos.



Advanced Type
Features

Jeffrey Maddalon

Uninterpreted
Functions

Dependent Types

Parameterized
Types

Partial Functions

Judgements

Unnamed Judgements

We may name judgements like we saw above, but PVS also
allows judgements to be unnamed as in

i,k: VAR int

j: VAR nonzero_integer

m: VAR posnat

mod(i,j): {k | abs(k) < abs(j)} = i - j * floor(i/j)

mod_pos: LEMMA mod(i,m) >= 0 AND mod(i,m) < m

JUDGEMENT mod(i,m) HAS_TYPE below(m)

I Cannot refer directly to an unnamed judgement

I Prover commands still apply it

I Proof of mod pos

(SKOSIMP) (ASSERT) (ASSERT)



Advanced Type
Features

Jeffrey Maddalon

Uninterpreted
Functions

Dependent Types

Parameterized
Types

Partial Functions

Judgements

Judgements for Types

I In the previous slides we have seen how to use a
judgement to show that an expression has a certain
type.

I JUDGEMENT can also be used to show that a type is a
subtype of another.

zero_to_five: TYPE = {i:int | i>=0 AND i<= 5}
zero_to_ten: TYPE = {i:int | i>=0 AND i<=10}
JUDGEMENT zero_to_five SUBTYPE_OF zero_to_ten

posreal_is_nzreal: JUDGEMENT posreal SUBTYPE_OF nzreal

equiv_is_reflexive: JUDGEMENT (equivalence?)

SUBTYPE_OF (reflexive?)

I Appropriate TCCs will be generated for each judgement


	Uninterpreted Functions
	Dependent Types
	Parameterized Types
	Partial Functions
	Judgements

